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AbItract-The elasticity solution to the problem of a cracked semi-infinite wedge is presented. The crack
emanates from the wedae apex bisecting the wedge angle. Crack surfaces are subjected to a pair of
opposing concentrated forces directed either normal or tangential to the crack plane and located an
arbitrary distance from the wedge tip. For the case of small wedge angles closed form results are presented
for the crack tip stress intensity factors. These results will be useful in calibrating tapered double cantilever
beam specimens.

INTRODUCTION

The tapered double cantilever beam (TOCB) is a commonly used test specimen in fracture
mechanics. When properly contoured, such a test configuration possesses the property that the
strain energy release rate is relatively constant for a range of intermediate crack lengths. This
fact permits the ready evaluation of the fracture properties of the material for a homogeneous
specimen or measurement of the fracture strength of an adhesive if the specimen is composed
of two adherends bonded together.

For short crack lengths the strain energy release rate depends heavily upon the local
geometry and crack length. Determination of the fracture characteristics of the specimen for
short cracks requires a detailed stress analysis accounting for the important geometrical
features. For example, such an analysis must include the effects of the shape of the specimen,
the crack length, the point of load application and the type of load applied.

Approximation of the end of the TOeB by a plane, cracked elastic wedge permits an
analytical analysis of the problem. It is the purpose of this paper to present the results of such
analysis and to study the role of the relevant geometrical parameters.

The geometry considered is a plane semi-infinite wedge of angle 280, The wedge contains a
crack emanating from the wedge apex, the plane of the crack bisecting the wedge angle. The
material is taken to be homogeneous, isotropic and linear elastic. The two crack faces are
subjected to a pair of opposing concentrated forces directed either normal or tangential to the
crack surfaces and located an arbitrary distance from the wedge tip. The solution for the stress
and displacement fields is obtained using the classical theory of plane elasto-statics.

In [I] Ouchterlony presented, in addition to other results, a solution for the case of a pair of
concentrated forces acting at the wedge apex and normal to the crack surfaces. Keer et al. [2]
considered the problem of a wedge containing a crack bisecting the wedge angle. They
formulated their solution for symmetric loading of the wedge and crack faces and presented
numerical results for the case of uniform pressure acting upon the wedge and crack surfaces.

It still remains to solve the elasticity problem of a cracked wedge subjected to concentrated
forces arbitrarily located on the crack faces. This problem is important in that the solution
provides the Green's function leading to solutions for other loading conditions. Furthermore,
the anti-symmetric problem resulting from the application of a pair of opposing concentrated
tangential forces has not been previously considered.

After stating the mixed boundary value problem the stress and displacement fields are
represented by means of Bromwich integrals and the problem reduced to a pair of dual integral
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equations. The first technique is similar to that in [3,4] where elastostatic problems
involving interaction between open notches and cracks were considered and yields good
numerical results provided 60 2:45°. To obtain information for smaller values of 60• the problem
is solved by a Wiener-Hopf technique and the "multiplying factor" method utilized.

Numerical values for the crack tip stress intensity factors are presented for different wedge
angles, load locations and types of loading. As an application of these results, a Dugdale model
of the yield zone is developed.

PROBLEM STATEMENT AND REDUCTION TO A PAIR OF
DUAL INTEGRAL EQUATIONS

The geometry of the problem, Fig. I, is best described by employing a polar coordinate
system r, 0 with coordinate origin at the tip of the wedge. The boundaries of the semi-infinite
wedge are located on the lines 0 =±Oo, r E (0, (0) where 00 E (0, 1T]t. The line 0 =0 bisects the
wedge; a crack of length g =1extends from the wedge tip along the ray 0 =O.

The wedge is composed of a linearly elastic, homogeneous and isotropic material with E, v
denoting the Young's modulus and Poisson's ratio respectively. For purposes of this analysis.
let E = U The polar components of the displacement vector are denoted by ua, va where the
superscript will depend upon the loading. In the same way the polar components of the
two-dimensional stress field are ura, u,a, 1'rlI' The theory of plane stress and an Airy stress
function are employed.

Two types of wedge loading are considered. The first is the application to the two crack
faces of a pair of opposing concentrated forces of magnitude P, the point of application being
r = /, / E [0,1) and the forces normal to the crack surface. The second type of loading is the
same as the first except the forces are directed tangentially to the crack face their magnitude
being T. These two loading cases correspond to the superscript a = I, 2 respectively.

Due to the type of loading and geometrical symmetry in this problem, only one-half of the
wedge 0E (0,00), rE (0, (0) need be considered provided appropriate boundary conditions are
enforced on the line 0 = 0, r E (I, (0). A mathematical statement of the boundary conditions on
the line 0 = 0, r E (0, (0) is as follows:

u,l(r, 0+) = - Pl>(r - /) r E (0, 1)

a=1 (Normalload) vl(r,O+)=O rE(I,oo)

1'~(r,O+)=O rE(O,oo)

1'~(r, 0+) = - n(r - /) r E (0,1)

a =2 (Tangential load) u2(r,O+)=0 rE(I,oo)

ui(r,O+)=O rE(O,oo)

where l>( ) is the Dirac delta function.

(I a)

(I b)

(lc)

(2a)

(2b)

(2c)

Fig. I. Geometry of cracked wedge.

tOnly values of I/o E (0. IT/2) are of interest for the TDCB but a broader range for I/o is considered herein.
me crack length and elastic modulus are taken to be unity so the problem statement will be in dimensionless form.
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The two bounding edges of the wedge 8 = :t ()o are traction free leading to the side
conditions

O't(r, (0) = rrli(r, (0) = 0 r E (0. x) a =1, 2.

Also regularity conditions as r -+ 0 and r -+ x require that

O',a, O't, rrli = O(r-'Y) 'Y < 1,/# 0; r-+O a = 1,2

O',a,O't, rrli =O(r- fJ ) (3> 1; r-+ x a= 1,2.

(3)

(4a)

(4b)

Use of the Airy stress function and Mellin transform [3] leads to the following integral
representation of the stress and displacement fields

where

rO',a(r, 8) = 2~; fa. {~- (s - I)} t/Jar-s ds

rO't(r, 8) = -21. ( s(s _I)t/Jar-s ds
17'1 JBr

a ( 8) - 1 ( d .I.a -s d
rr re r, - 217'; JBr S d8'" r s

11. {d2
} r-

s

ua(r,8)=217'; Br ~+(S-I)(I+IIS) t/Ja s ds

va(r, () =2~; fBr {dd;3 +[(2 + II)S2 - (1- II)S +I) dd8} t/Ja s(;-: 1) ds

t/Ja =Aa cos [(s -1)(8 - (0)] +Ba sin [(s -1)(8 - (0)]

+ca cos [(s + 1)(8 - (0)] +Da sin [(s + 1)(8 - (0»).

(Sa)

(Sb)

(Sc)

(6a)

(6b)

(7)

Further, enforcement of the regularity conditions (4a, b) requires that the Bromwich path lie in
the strip

Re (s) E (0, I). (8)

Satisfying boundary conditions (lc), (2c) and (3) permits the expression of Aa - Da in terms
of unknown functions 4>a(s) a =1,2 as follows:

where

A. =_C' =-(s + I) sin (s80) sin (80)4>1
2A1

B
'
=1+S D1 =(I +s) [s sin (80) cos (s80)+sin (s80)cos (80)]4>1

1- s (1- s) 2A.

A2=_C2 = [s cos (s80) sin ((0) - sin (s80)cos (80)]4>2
2A2

B2 =(I +s) D2 =-(s + 1) sin (s80) sin (80)4>2
(1- s) 2A2

AI = sin (2s80)+s sin (280),

A2 =sin (2s80)- s sin (280),

(9a)

(9b)

(9c)

(9d)
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Boundary conditions (la, b) and (2a, b) remain to be satisfied and for a = I lead to

V'(r,0)=-21• r <I>'(svsds=O rE(I,:x:) (lOb)
7T1 JB,

while for a = 2

T~(r, 0+) = _1_. r s [sin
2
(s60) - S2 sin

2
(60)) <l>2(S)r-'-1 ds = - T8(r -I) r E (0, I) (II a)

27T1 JB, A2

The final form of the dual integral equations is attained by integrating eqns (lOa) and (lla) with
respect to rbetween the limits of 0and r. For convenience the results are expressed in matrix form
as follows:

where

~ r [Nall ]{<I>Il(s)}r-' ds = {P} (1- H(l- r» r E (0,1)
2mJfu T

2~i Lr {<I>a(s)}r-' ds = {~} r E (I, 00)

(l2a)

(l2b)

[N"") =(sin' (s8~ - s' sin' (0.)) [:' 1: ]
and H(x) is the Heaviside step function. Equations (l2a) and (b) represent two sets of uncoupled
dual integral equations since Nail is diagonal. Statement in this form permits the solution of both
problems at the same time.

FIRST SOLUTION OF THE DUAL INTEGRAL EQUATIONS

The first solution of the dual integral equations parallels the treatment in [3-5) so it is only
necessary to outline the steps. First eqn (l2a) is rewritten as follows:

_I. r tan(7Ts){<I>a(s)}r-'ds={P}(I_H(l_r»+_I. r [Mall ]{<I>Il}(sV'ds rE(O,1)
2mJfu 2 T 2mJfu

where

(13)

Note that Mall vanishes when 60 = 7T.
The substitution

(14)
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satisfies eqn (l2b) and eqn (13) assumes the form

(r dt {PIJ
o

{<f>G(/)} y'(r _ t) =2(1- H(l- r» T

+-2
1

.1. 2[MG~(s)]{cI>~(s)}r-' ds r E (0, I).
1r1 Br

349

(15)

If the presence of <f>~(s) in the r.h.s. of eqn (15) is momentarily ignored then this equation may
be viewed as an Abel integral equation for the auxiliary function <f>G(/).

Inverting this Abel equation and completing details similar to those in [3, 4J permits the
reduction of eqn (15) to a Fredholm integral equation of the second kind

where

and

(17)

The numerical solution of eqn (16) is complicated by the unbounded and discontinuous
forcing function. To overcome this difficulty a new variable AG(t) is defined

and eqn (16) reduces to

{AG(t)} = (J LGG(€II, 80)d{ {I} + (I [L G~({//, 80)]{A~({)}~
J, y'{y'({-/) 1 Jo {

t E (0, I), no sum on a.

(18)

(19)

The kernel function LG~ can be determined by converting the Bromwich integral in eqn (17) to a
real line integral which is then evaluated numerically.

Evaluation of the tractions in the crack plane is of particular interest, especially in the
neighborhood of the crack tip. As in [3,4] it is readily shown that

r-+I+

r-+ 1+.

(20a)

(20b)

The standard definition of the crack tip stress intensity factors K" K" is given by

I( 0) _ K,
CT, r, -y'[21r(r-l)]+0(1)

2 ( 0) - K" 0(T"r, -y'[21r(r-I)]+ I)

r-+I+

r-+I+

(2Ia)

(2Ib)
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and knowledge of K1, Ku completely describes the stress field in the neighborhood of the crack
tip. Substituting from eqn (18) into (20) and using (2Ia) and (b) yields the following expressions
for the crack tip stress intensity factors

K1 =P~(~) (A I
(1) +~ (1 ~ I))

Ku =T ~(~) (A2
(1) +~C ~/))'

(22a)

(22b)

To recover the role of crack length g in eqns (22), replace P, T by Ph/a, TlVa and 1by I/o.

SOLUTION BY THE WIENER-HOPF METHOD

An alternate approach is required to achieve accurate solutions of eqns (10) or (11) for
small values of 00• In [6] Williams used the multiplying factor method to solve a similar type of
problem and it is convenient to employ the method here. As the details are similar to those
presented in [6] only the essential steps are outlined.

Equations (10) and (11) may be restated as follows:

2~j fsr s[Nall ]{4>Il(s)},-,-1 ds =- {~} S(, -l) , E (0. 1)

2~j Lr {4>a(s)},-' ds = {~} , E (1, oc).

(23a)

(23b)

Following the Wiener-Hopf procedure, the kernel functions must be factorized. For example

where

and

1
ic+" I (1-' sin

2
(00) cosech

2
({Oo) )d{ )

L+(s) =exp -21. ~ og 1+f sin (280) ~osech (2{00)
11'1 Jic-" {-IS

(24)

(25)

The function L+(s) is regular and non·zero for Re(s) > - E while lim L+(s) =I. Furthermore
1,1--"

L_(s) is given by L(s) =L+(-s) and is regular and non-zero for Re(s) < E. The factorization of
sN22 is identical to eqn (24) except that eqn (25) must be altered by replacing the term
I+{2 sin (280) cosech (2{Oo) by 1- {2 sin (280) cosech (2{Oo).

Now define a function OW by

(26)

and note that OW =0 for {E (0. I). Applying the Mellin Transform to both sides of (26) and
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replacing s by s + I gives the result

" r (1- s:o)f. Gwe d[= C ,e.) .
r 2--;- L(s)s

3.51

(27)

(28)

(29)

As suggested by the multiplying factor method. multiply both sides of (23a) by r. replace r by
rle, multiply both sides of (23a) by GW and integrate between the limits of 0, 00. Upon using
(27), eqn (23a) reduces to

r (1+ SOo)
2~f..~ r (~+~) L.(,)4>'(,)'-' d, = - Prr~ GW8 (~-/) d[

11' r (r)
=-P7 G 7

and a similar expression for 1I»2(S) upon redefining L+(s) and replacing P by T.
Note from eqn (23b) that lI»a(s) is analytic for Re(s»O while rl!+(sOol11')] only has

poles for Re(s)s-(11'/200). Accordingly the l.h.s. of (28) vanishes for rE(I,oo). Taking the
Mellin transform of both sides of (28) then gives the solution

- 211'r (I + SOo)
II»I(S) = 11' P (I!:. G (!:.) r,-I dr

oosrG+s:O)L+(S) Jo I I

with a similar expression for 1I»2(S).
It is now straightforward to obtain the asymptotic expressions for the stress O',(r, 0), '1',,(r, O)

as r-+ I+. From eqns (lOa), Ola), (21) and (29) it results that

K1 =-P ~eo:)tG(i)

Ku = - T~eo:)tGG)

(30a)

(30b)

where the expression for L(s) appropriate for the loading case is used in (26) when evaluating
GO//).

As a special case, note that if 90 =11', then L+(s) =I and

thereby recovering the classical results. Furthermore. from eqn (26) it can be shown that

_1 G (1)-~ /(_/) 1-+ I-
I / 11' V 1-/

(31)

given asymptotic expressions for KI, Kll as / -+ I-for 00 E (0,11'].
It remains to evaluate (1/J)G(1/J) for more general values of the geometrical parameters. To

accomplish this it is convenient to shift the Bromwich path and recast the line integral into the
fol1owing form
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where Re (z) E (-I. 0). Equation (32) is only valid for the case of normal loading, a =1. For
tangential loading, a =2, replace the term sin (2z80) +z sin (280) by sin (2z80) - z sin (280) and
alter the definition of L ... (z).

The integral in eqn (32) is readily evaluated by closing the contour in the right plane and
summing the residues. All of the poles are simple and located at the zeros of IIz[sin2 (z80)

Z2 sin2 (80)] = O.
Provided 80 < 146.3° the only real zeros are at z = 0 and I. Accordingly, for 80 < 146.3° and

the case of normal loading

1 (I) _80 j (280 +sin (280») r G+~) 2cos (80)L...(l)1 1
- - G - - - V1f 2 . 2 L ... (O) - ---.,,........:.::...-.,..,;,;,.,:,,,.------

1 1 21f 80 - SIn (80) r (1+ ~) (sin (8
0
) - 8

0
cos (8

0
))

(33)

where an = f3n + iYn are the complex zeros of sin2(z80) - Z2 sin2(80) = 0 in the positive quadrant
and are tabulated in [7].

It is readily shown for the case of normal loading (a = 1) that

\

sin2 (80) ) 1/2l----.;r
L+(O) = (L(O»1/2 = . 80

1+SIn (280)

280

(34)

with a corresponding sign change in the denominator for the case of tangential loading a = 2.
The term L+(an ) is evaluated from eqn (25). Setting c =0 and simplifying the integral in (25)
leads to the result

where

I( 8) =s80 r'" log [h({, (0)] d{
s, 0 1f Jo {2 +(S80)2

and

sin2(Oo)f
1- 0 2 ' h2 ({)

h({ 8) = O'SIn
,0 1+ sin (200){

80 sinh (2{)

for the normal loading case, a =1. For the tangential load case, a =2, the (+) sign in the
denominator for h({, (0) becomes a ( - ) sign.

Substituting from eqns (33), (34) into (30) gives the following expressions for the intensity
factors

r (!+ (0)
Kr _ 1(200 +sin (280») _ I(~) 2 1f ( 2cos (Oo)L+(1) ) 1
p - V Ooe sin2(80) V 21f r (1 +~) sin (80) - 80 cos (80)

+OWl Re Udi'Y1)} 1-+0 (35a)
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where (" (2 are complex constants. Note that in the case of tangential loading, the residue at
z =0 vanishes so the linear term does not appear in eqn (35b). To recover the crack length
parameter in eqns (35) replace I by Ila and P, T by Ph/a, T/ya.

NUMERICAL RESULTS AND DISCUSSION

The numerical method used to solve eqn (19) is identical with that described in [3] with
appropriate changes to account for the differences in the kernels and Bromwich paths. As in [3]
the integration interval [0, I] in (19) was divided into N equal subintervals. In extreme cases a
partition of N =40 was required to achieve an accuracy of 2.5%. Figure 2 presents N'(t)
showing the convergence for the representative case 80 = 45°, 1=0.2.

The stress intensity factors are presented in Figs. 3 and 4 for 80 2'; 45° in the case of normal
loading and for 80 2'; 30° for tangential loading. For other values of 80 it was not economically
feasible to achieve the desired numerical accuracy by this method especially for IIa =s;; 0.6.

In the special case 80 =180", AO(t) =0 as can be seen from (19) and eqns (22) give the
classical results. This illustrates how the first solution method is a perturbation about the
60 =180" limit case and therefore why it is difficult to obtain accurate numerical results for
smaller values of 80,

Accurate values for the intensity factors for the lower values of 80 are readily obtained from
eqns (35) in conjunction with the asymptotic expression (31). Equation (35a) is in complete
agreement with Ouchterlony's results[l] for the limit case of 1= O. The range of applicability of
the first and second term residue expansions in (35a) and (b) can be assessed by evaluating the
magnitude of the contribution from the next residue.

The values of {31 are determined from [7] and it results that the next contribution in the
series is 0{/4.2I'o Re «(a/h'l)} as / -+0+. As an example, for 80= 30°, {31 = 8.02, suggesting that the
linear terms in (35a) and (b) give accurate results for a significant range of values of / with this
range increasing as 80 decreases. This is further supported by comparing results from eqns (35a)

12

10

8

N
< 6

:E

4

2

o
o 0.2 0.4

t
0.6 0.8 1.0

Fig. 2. Solution to integral equation - 80 =45·. I =0.2.
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Fig. 3. Stress intensity factor for cracked wedge.
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Fig. 4. Stress intensity factor for cracked wedge.
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and (b) with the numerical values from (22a) and (b). Figure 3 shows that for 80 =450 the
maximum error is less than 7% provided (I/a) s 0.75. Similar cOrhparisons in Fig. 4 suggest even
better accuracy.

The remainder of this paper is primarily concerned with wedges where 80 is small so eqns
(35a) and (b) in conjunction with (31) are judged to be sufficiently accurate. The values of L+(l)
have been numerically evaluated and are presented in Fig. 5. An asymptotic expansion for
L+(1) is determined to be

(36)

and is shown in Fig. 5 as well.
The user of a tapered double cantilever beam specimen is concerned with how the intensity

factor depends upon crack length g for a fixed load position I. To see this dependence.
reintroduce the crack length into eqn (35a) and normalize the intensity factor by I. Then (35a)
assumes the form

(37)

where

C 2 _ 280 +sin (280)

o - 80
2_ sin2(80)

The intensity factor [(K1V1)/P] in (37)increases monotonically with a/l for (a/ I) E [1, 3Ct / Co)
and attains its maximum at (all) = (3Ct/Co) where

(K1V/) 2 f(C03
)

-p max =3" 3C1 •
(38)

For values of (a/l) > (3CI/Co) the intensity factor decreases monotonically with increasing (a/I)
approaching zero like Cov(l/a) as (a//)-+oo.

0•• ...--------------------------::::0------,

0.'
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35

30

25

20

15

10

5

2 3 4 5 6
8/£

Fig. 6. Dependence of stress intensity factor upon crack length - 110 =7°.

A representative result is presented in Fig. 6 for the case 80 =7°. Equation (37) is valid for at
least (a//) ~ 1.3 so the dependence of the intensity factor is captured in virtually closed form for
all values of (a/I) of interest. For values of (a//) close to unity, (37) is not valid and the
asymptotic result obtained from (31) should be used

KJyl /(2) I/a a
----p- =V :; YO-I/a) as T-+ 1+ (39)

Plotting values from (39) in Fig. 6 is difficult as its region of influence is only (a//) E 0, 1.1].
Note that for (a/I) E [1.8,4.8] the values of (K1yl/P) range between 30.0 and 32.6. It is these
intermediate crack lengths for which K1 is effectively constant and which make the TDCB
specimen so useful.

As another application of the results presented herein, consider the calculation of the
Dugdale plastic zone size. Consider only normal loads Po and denote the point of load
application by 10, Further let the physical crack length be 11 while the combined length of the
crack and Dugdale zone is g. In the Dugdale zone (r E (II> a), 8 = 0)0'8 =O'y where O'y is the
yield stress of the elastic-perfectly plastic material.

The dimensionless curves presented in Fig. 3 may be characterized by

(40)
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2.5

2.0

1.5

'.0

0.5

o
o 0.5 1.0

~
1,

1.5 2.0

Fig. 7. Load required to create plastic zone - 60 =7·, (10//1) =0.25.

where for the smaller values of 80, F[(//a), 80] is represented by eqn (35a) and the asymptotic
result arising from (31). Now using superposition and eqn (40) the intensity factor at the tip of
the Dugdale zone is given by

K1 =uyva{ Po F(!!,80)- [I F(a,Oo)da}. (41)
uya a J'l/a

The intensity factor at the end of the Dugdale zone must vanish giving the following relation

Pal JI_0 = .. F(a, ( 0) da.uy/, I. F [~ 0] '1 //1

a' 0

(42)

The relationship between Po and g is readily determined now by substituting a range of values
of g into the r.h.s. of (42) and calculating the corresponding values of Po. The results of such a
calculation are shown in Fig. 7 for the special case of 00 = 7°, (loll.) = 0.25.

In summary, this paper presents the results of an elastic stress analysis of a cracked wedge
subjected to concentrated normal and tangential loads applied to the crack faces. Results for
the crack tip stress intensity factors are developed and closed formed expressions given which
are valid for a range of values of 00, all. These closed form results are of great practical value
as they permit the accurate calibration of tapered double cantilever specimens.
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